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Exceptional points and double poles of theS matrix

I. Rotter
Max-Planck-Institut fu¨r Physik komplexer Systeme, D-01187 Dresden, Germany

~Received 27 August 2002; published 7 February 2003!

Exceptional points and double poles of theS matrix are both characterized by the coalescence of a pair of
eigenvalues. In the first case, the coalescence causes a defect of the Hilbert space. In the second case, this is not
so as shown in previous papers. Mathematically, the reason for this difference is the biorthogonality of the
eigenfunctions of a non-Hermitian operator that is ignored in the first case. The consequences for the topo-
logical structure of the Hilbert space are studied and compared with existing experimental data.
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I. INTRODUCTION

Information on the topological structure of the Hilbe
space can be obtained from a study of its singularities. Be
@1# showed that geometric phases appear when a diab
point is surrounded by varying adiabatically external para
eters of a quantum system. Manifestations of this phase
tor have been considered and proven experimentally alre
in 1980s in many different fields of physics, e.g., Ref.@2#. In
1994, it has been studied also by using microwave reso
tors: the sign change of the wave function has been fo
after a cyclic excursion around a diabolic point in the spa
of shapes of the resonator@3#.

Other singularities are exceptional points@4#, which ap-
pear in the complexL plane of the eigenvaluesEk(L) of the
HamiltonianH5H01LH1. Their positions are characteris
tic of the HamiltonianH, onceH0 and H1 are given@5–7#
~which both are assumed to be real and symmetric!. The
exceptional points are characterized by the coalescence
pair of eigenvalues, i.e.,El(LEP)5Ek(LEP). When the corre-
sponding eigenfunctions are assumed to be orthogonalize
the standard manner, it follows thatc l(LEP)5ck(LEP). This
means, thatck(LEP) cannot be normalized atL5LEP, since
the orthogonality conflicts with the normalization requir
ment. As a consequence, an exceptional point is chara
ized by the fact that the rank of the associated matrixH0
1LEPH1 drops by 1 atL5LEP and the two wave functions
coalesce into one. This implies a defect of the underly
Hilbert space@4#.

In Ref. @8#, the topological structure of exceptional poin
is studied experimentally by using a microwave resona
The exceptional point is surrounded by varying adiabatica
external parameters of the system. As a result, the eigen
ues and eigenvectors are exchanged while encircling an
ceptional point, but one of the eigenvectors undergoes a
change which can be discerned in the field patterns. F
these results, the authors draw the conclusion that the ex
tional points can clearly be distinguished from other top
logical singularities such as diabolic points.

In describing physical processes, the exceptional po
lead to problems. First, the splitting of the HamiltonianH
into H0 and H1 cannot be done arbitrarily. For a fixedH0,
the partH1 is well defined since it describes the coupling
the states of the system~described byH0) via the environ-
ment~continuum of decay channels! into which it is embed-
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ded @9#. Second, the propertyEl(LEP)5Ek(LEP) is charac-
teristic of a double pole of theS matrix. Here, Ek5Ek
2 i /2Gk is the complex energy of the resonance statek with
energyEk and width Gk . The S matrix describes physica
processes, and no hints at all to defects of the Hilbert sp
are known at a double pole. For numerical examples, see
results of calculations performed in a schematical model@10#
and for atoms@11,12#.

Theoretical studies have shown that the topological str
ture of avoided level crossings is directly related to the
pological structure of double poles of theS matrix being
branch points in the complex plane@13#. The transition from
a double pole of theSmatrix to an avoided level crossing b
varying a parameter occurs continuously. The avoided le
crossings are directly related to the diabolic points@1#. Thus,
the topological structure of a double pole of theSmatrix and
that of a diabolic point are related to one another.

The problem is now the following. The double pole of th
S matrix and the exceptional point are both characterized
the coalescence of two eigenvalues of a non-Hermit
Hamilton operator at a certain value of a parameter. Nev
theless, their topological structures are different: accordin
Ref. @8#, the topological structure of an exceptional poi
differs from that of a diabolic point, while the topologica
structure of the double pole is related to that of the diabo
point, as discussed above@13#. The question arises, therefor
what differences exist between the exceptional points and
double poles of theS matrix, which could cause their differ
ent topological structures.

In order to find an answer to this question, the Sch¨-
dinger equation has to be solved in the whole function sp
containing everything, i.e., discrete and continuous states
using a projection operator technique, an effective Ham
tonian can be derived from this Schro¨dinger equation which
describes the system (Q subspace! after embedding it into
the continuum of decay channels (P subspace! @9#. Its eigen-
values and eigenfunctions are complex. The eigenvalues
incide with the poles of theSmatrix. The eigenfunctions are
related to the wave functions of the resonance states b
Lippmann-Schwinger-like relation@14#. They are biorthogo-
nal. At the double pole of theSmatrix, the Hilbert space ha
no defect due to the biorthogonality of the wave function
The S matrix behaves smoothly by varying parameters a
when the double pole is met@13#.

It is the aim of the present paper to derive the pha
©2003 The American Physical Society04-1
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changes of the wave functions that appear after surroun
a double pole of theS matrix parametrically. In Sec. II, the
relation between the eigenvalues of the effective Hamil
operator and the poles of theS matrix is discussed, while in
Sec. III the relation between double poles and avoided le
crossings is discussed. The double poles of theS matrix are
branch points in the complex plane. At these points, the w
functions of the two states are exchanged,c1→6 ic2. This
causes a mixing of the wave functions in the region
avoided level crossings. In Sec. IV, the phase changes
pearing after surrounding a diabolic point and a double p
of the S matrix are derived and compared with experimen
results. They agree with all data for isolated crossings of
states that are published in Refs.@3,8#. Conclusions on the
topological structure of the function space are drawn in
last section.

II. EFFECTIVE HAMILTONIAN AND POLES
OF THE S MATRIX

After embedding a system into the continuum of dec
channels, the discrete states of the system turn over in r
nance states with a finite lifetime. The Hamiltonian of t
system becomes effectively non-Hermitian with complex
genvaluesEk5Ek2 i /2Gk , where the widthGk is inversely
proportional to the lifetime.

The relation between the poles of theS matrix and the
complex eigenvaluesEk can be derived from the Schro¨dinger
equation,

~H2E!CE50, ~1!

with the Hamilton operatorH and the set$CE% of wave
functions containing the discrete states of the system as
as the scattering wave functions of the environment i
which the system is embedded. The operatorH is Hermitian.

In a first step, two sets of equations have to be solved

~Hcl2Ek
cl!Fk

cl50 ~2!

and

(
c8

~Hcc82E!jE
c8(1)50, ~3!

whereHcl describes the system with the discrete statesk and
Hcc8 the continuum with coupled decay channelsc. Then,
the two projection operators are defined by

Q5(
k

uFk
cl&^Fk

clu, P5(
c
E dEujE

c(1)&^jE
c(1)u ~4!

andHcl is identified withQHQ[HQQ andHcc8 with PHP
[HPP . The two other terms ofH5HQQ1HPP1HQP
1HPQ describe the coupling between the two subspac
The solutions of coupled channel equations with source t

(
c8

~Hcc82E!^jE
c8(1)uvk&52^jE

c(1)uHPQuFk
cl& ~5!
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provide the wave functionsvk that contain the coupling be
tween the two subspaces.

Using the completeness relationP1Q51, one obtains
for the solution of the whole problem@9#

CE
c 5jE

c(1)1
1

A2p
(
k51

N

Ṽk

g̃k
c

E2Ẽk1
i

2
G̃k

. ~6!

Here,

Ṽk5F̃k1ṽk5~11GP
(1)HPQ!F̃k ~7!

is the wave function of the resonance statek, GP
(1)5P(E

2HPP)21P is the Green function in theP subspace,ṽk is
determined by Eq.~5! with Fk

cl replaced byF̃k , and

g̃k
c~E!5A2p^F̃k* uHQPujE

c(1)&5A2p^jE
c(1)uHPQuF̃k&.

~8!

Further,F̃k is the eigenfunction andẼk5Ẽk2 i /2 G̃k is the
eigenvalue of the effective Hamiltonian

H5HQQ1HQPGP
(1)HPQ , ~9!

which describes the system after embedding it into the c
tinuum of decay channels.H is non-Hermitian, its eigenval-
ues and eigenvectors are complex. The eigenfunctions
biorthogonal,

^F̃k* uF̃ l&5dk,l , ~10!

whereF̃k
right[F̃k andF̃k

left5F̃k* @13,15#. As a consequence

^F̃kuF̃ l&5Re~^F̃kuF̃k&!; Ak[^F̃kuF̃k&>1,

^F̃kuF̃ lÞk&5 i Im~^F̃kuF̃ lÞk&!52^F̃ lÞkuF̃k&;

Bk
lÞk[u^F̃kuF̃ lÞk&u>0. ~11!

Using Eqs. ~6! and ~7! and the Lippmann-Schwinge
equation for the scattering wave functions, one gets for
resonance part of theS matrix @9,13#,

Scc8
(res)

5 i (
k51

N g̃k
cg̃k

c8

E2Ẽk1
i

2
G̃k

. ~12!

The g̃k
c are the coupling matrix elements of the resonan

states to the continuum.Scc8
(res) describes the resonance part

the S matrix also in the overlapping regime. The interfe
ences between the resonance states are taken into accou
diagonalizing the effective HamiltonianH. Due to the uni-
tarity of theS matrix, theg̃k

c , Ẽk , andG̃k are energy depen

dent functions. The relationG̃k5((g̃k
c)2 holds only for iso-

lated resonances. In the overlapping regime, the ene
dependence of both functions is different, as a rule. For
merical examples, see Ref.@16#.
4-2
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As can be seen from Eq.~12!, the poles of theS matrix
are determined by the eigenvaluesẼk of the effective Hamil-
tonian ~9! after solving the fixed-point equationsEk5 Ẽk(E
5Ek) @13#. As an example, resonances of a microwave c
ity are studied experimentally in the overlapping regim
@17#. The results show the phenomenon of resonance t
ping and are described well by Eq.~12! with the effective
Hamiltonian~9!.

III. DOUBLE POLES OF THE S MATRIX AND AVOIDED
LEVEL CROSSINGS

The relation between double poles of theS matrix and
avoided level crossings can be illustrated best by means
simple two-level model. Let us consider the complex tw
by-two Hamiltonian matrix

H5S e1~l!2
i

2
g1 v

v e2~l!2
i

2
g2

D , ~13!

whereek andgk (k51,2) are the unperturbed energies a
widths, respectively, of the two states. Theek are assumed to
depend on the parameterl in such a manner that the tw
states may cross in energy atlcr whenv50. The two states
interact only viav, which is assumed in the following to b
independent of the parameterl ~as thegk). The eigenvalues
of H are

E62
i

2
G65

1

2 F ~e11e2!2
i

2
~g11g2!G6

1

2
AF, ~14!

with

F5F ~e12e2!2
i

2
~g12g2!G2

14v2. ~15!

WhenF(l,v)50 at l5lcr ~andv5vcr), theS matrix has
a double pole.

According to Eq.~15!, F5FR1 i F I is generally a com-
plex number. For illustration, let us discuss the case with
v. Thene15e2 at l5lcr and we have to differentiate be
tween three cases

FR~l,v!.0→AFR5real, ~16!

FR~l,v!50→AFR50, ~17!

FR~l,v!,0→AFR5 imaginary. ~18!

The first case gives the avoided level crossing in energy w
an exchange of the two wave functions atlcr. The second
case corresponds to the double pole of theS matrix. In the
third case, the two levels cross freely in energy and the
states arenot exchanged at the critical valuelcr @13#. In Ref.
@18#, the two casesFR.0 andFR,0 are studied experimen
tally in a microwave cavity and calledovercritical andsub-
02620
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critical coupling, respectively. The more complicated cas
with complexv are considered in Ref.@19#.

The example with realv illustrates nicely the relation
between a double pole of theS matrix and avoided or even
free crossings of two levels in the complex plane. The dou
pole is a branch point in the complex plane. The number
these branch points is of measure zero, but their influence
the dynamics of quantum systems can be traced in m
avoided level crossings. While the wave functions of the t
states are exchanged just at the double pole of theS matrix
and are unmixed at any value of the parameter different fr
the critical one, this is not so at an avoided level crossing
this case, the wave functions remain mixed in a certain ra
of the parameter around the critical value. This fact ha
strong influence on the mixing of all the wave functions o
system when the level density is high, and different avoid
level crossings appear at values of the parameter inside
range. For the results of numerical studies, see Ref.@13#.

The biorthogonality relation~10! holds everywhere, in-
cluding at the double pole of theSmatrix. The reason is tha
Ak→`; Bk

l →` @Eq. ~11!# and that̂ F̃k* uF̃ l& is the difference
between two infinitely large numbers~but not their sum!.
This difference may be 0~for lÞk) or 1 ~for l 5k). Thus,
the orthogonality and normalization requirements do
conflict with one another and the Hilbert space has no de
at all. For the results of numerical studies, see Ref.@13#.

It should be mentioned here, that the biorthogonality
the $F̃k% follows directly from the non-Hermiticity ofH.
Only for the eigenfunctions of a Hermitian operator hol
F̃k

left5F̃k
right @15#. Due to the symmetry ofH it holds F̃k

left

5F̃k
right* for its eigenfunctions what results in Eq.~10! for

the biorthogonality relation.
Further analytical studies@13# have shown that the wav

functions of the two states at the double pole of theSmatrix
are exchanged. It is

F̃k
bp→6 i F̃ lÞk

bp ~19!

in approaching the double pole of theSmatrix. This result is
confirmed by numerical studies on laser induced continu
structures in atoms@12#.

The real and imaginary parts of the wave functions of t
resonance states as a function of an external paramete
crease limitless in approaching the double pole of theS ma-
trix @13#. The sign of the imaginary part jumps at the doub
pole ~when F̃1→1 i F̃2). When the double pole is not me
by varying the external parameter, but the levels avoid cro
ing at the critical value of the parameter, the real and ima
nary parts remain finite but the jump of the sign remains. T
wave function

F̃ch5a1F̃16 ia2F̃2 ~20!

changes smoothly~without any jump of the sign of its com
ponents! for a2→a1 at the double pole of theS matrix or at
the critical value of the parameter where the levels av
crossing. For the results of a numerical study, see Ref.@13#.
4-3
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I. ROTTER PHYSICAL REVIEW E 67, 026204 ~2003!
The diabolic points are related to avoided crossings
discrete levels. They occur by varying two independent
rameters: at the diabolic point, two energy surfaces dra
over the plane of the two external parameters touch e
other at one point forming a double cone.

IV. GEOMETRIC PHASES

Let us now consider the geometric phases appearing
encircling a diabolic point and a branch point in the comp
plane~double pole of theSmatrix!, respectively. In any case
the paths of encircling are characterized by the valueF, Eq.
~15!, which vanishes only at the branch point in the comp
plane. Most interesting are states whose eigenvalues are
to the real axis. We can restrict our discussion therefore
real v ~see Sec. III!.

For encircling the diabolic point or the branch point in t
complex plane, two external parameters have to be varied
the experiment of Ref.@3#, the diabolic point is surrounde
by varying the shape of the microwave resonator by me
of two parameters but leaving the coupling strength to
antenna unchanged. Since the two levels considered a
crossing, the whole path of encircling the diabolic point is
the overcritical regime. That means, the critical value of
parameter is passed twice, on the way forth as well as b
under overcritical conditions, and the wave functions are
changed each time when the critical value of the paramet
reached. This is not so in the experiment of Ref.@8# where
one of the two parameters is the coupling strength of
cavity to another one. Therefore, the critical value of t
parameter is passed on the path of encircling the excepti
point ~or branch point in the complex plane! only once under
overcritical conditions. The other part of the path is in t
subcritical regime where the wave functions are nowhere
changed~see Sec. III!.

In detail, the diabolic point is surrounded in the expe
ment of Ref.@3# in the regime of overcritical coupling alon
the whole way of encircling andlcr is passed twice in oppo
site directions,

~i! F̃k→2 i F̃ l ; F̃ l→1 i F̃k , i.e.,

$F̃1 ,F̃2%→$2 i F̃2 ,1 i F̃1% ~21!

and ~ii !, on the way back,F̃ l→2 i F̃k ; F̃k→1 i F̃ l , i.e.,

$2 i F̃2 ,1 i F̃1%→$2F̃1 ,2F̃2%. ~22!

The phase change occuring after one surrounding the
bolic point is therefore

$F̃1 ,F̃2%→$2F̃1 ,2F̃2%. ~23!

This corresponds to the geometric phase discussed by B
@1#.

The way of encircling the branch point in the compl
plane itself passes from a region with overcritical coupling
lcr to another one with subcritical coupling atlcr. An ex-
02620
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change of the wave functions takes place only at overcrit
coupling where the resonances avoid crossing. Thus, a
full surrounding gives

$F̃1 ,F̃2%→$2 i F̃2 ,1 i F̃1% ~24!

and a second one~in the same direction! gives

$2 i F̃2 ,1 i F̃1%→$1F̃1 ,1F̃2%. ~25!

That means, surrounding the branch point in the comp
plane twice restores the wave functionsF̃k including their
phases. This corresponds to the result obtained for surro
ing the diabolic point twice. In both cases, the wave fun
tions including their phases are restored after a second e
cling in the same direction:

$F̃1 ,F̃2%⇒$F̃1 ,F̃2%. ~26!

Encircling the branch point in the complex plane in t
opposite direction gives

$F̃1 ,F̃2%→$1 i F̃2 ,2 i F̃1%. ~27!

Since the experiment of Ref.@8# is not sensitive to the pos
sible occurence of a phasei of the wave function, the result
~24! for one loop with a certain orientation of the path a
the results~27! with the opposite orientation of the pat
agree with the experimental data given in Ref.@8#. There are
no experimental data in Ref.@8# for the phase changes after
second loop.

An experimental study of interferences between atom
levels in a laser field is expected@19# to allow conclusions on
the phase changes, including those after a second loop.

V. CONCLUDING REMARKS

In the present paper, the phase changes occuring
encircling parametrically an isolated diabolic point and
double pole of theS matrix ~branch point in the complex
plane! are calculated. The results are shown to agree with
experimental data that are published in Refs.@3,8#.

The results of Ref.@3# point to the interesting fact that th
phase changes after surrounding higher-order degener
are more complicated than those obtained after encirclin
diabolic point. This result has given rise to further theoreti
studies, e.g., Ref.@20#.

The experimental results in Ref.@8# are interpreted by the
authors on the basis of exceptional points. This interpreta
leads to the conclusion that an exceptional point can cle
be distinguished from other topological singularities such
diabolic points. The authors claim the following: encirclin
the exceptional point a second time completely with t
same orientation, one obtains$2F̃k ,2F̃ l%, while the next
complete loop yields$2F̃ l ,F̃k% and only the fourth loop
restores fully the original pair$F̃k ,F̃ l%. The authors show
experimental results only for one complete loop. No data
given for two or more loops.

The appearance of a phase change of both wave funct
4-4
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after a second loop around the exceptional point,F̃k⇒
2F̃k ; F̃ l⇒2F̃ l , suggested in Ref.@8#, does not agree
with the result ~26! obtained for a second complete loo
around a branch point in the complex plane. According
result~26!, the original pair$F̃k ,F̃ l% is restored already afte
a second complete loop when it is completed with the sa
orientation. This result coincides with that obtained for
second loop around a diabolic point. It is an expression
the fact that diabolic points and branch points in the comp
plane are related to one another as discussed in this pa

The results for one loop cannot differentiate between
e

,
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two interpretations since the experiment is not sensitive
the possible occurence of a phasei in the wave function. It
can therefore not be concluded from the published exp
mental data whether or not the topological structure stud
in Ref. @8# is different from that of a diabolic point. Furthe
experimental studies are necessary, maybe on atoms in
ser field as suggested in Ref.@19#.
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